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ABSTRACT

A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a
deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down-
valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity
field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations
are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the
valley’s axis. The pressure gradient term in the momentum equation is calculated from the temperature field
by means of the hydrostatic equation. The friction term is then calculated as a residual in the x-momentum
equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.

The method is applied to data from an 8-km-long segment of Colorado’s Brush Creck Valley on the night
of 30-31 July 1982. Pressure decreased with distance down the valley on horizontal surfaces, with peak horizontal
pressure gradients of 0.04 hPa km™*, The valley mass budget indicated that subsidence was required in the
valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of
0.10 m s™! were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum
fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of
the jet. Friction, calculated as a residual in the x-momentum equation, was negative, as expected on physical
grounds, and attained reasonable quantitative values.

The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only
partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order
to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon
observations were made.
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i. Introduction

Whiteman and Barr (1986, hereafter referred to as
WB) recently published an analysis of the atmospheric
mass fluxes on the clear night of 30~31 July 1982 in
an 8-km segment of Colorado’s Brush Creck Valley.
Their analysis was based on tethered balioon data col-
lected as part of the U.S, Department of Energy’s-At-
mospheric Studies in Complex Terrain (ASCOT) Pro-
gram. Whiteman and Barr’s analysis represents an at-
tempt to evaluate the fluxes of mass into and out of
the valley segment using the mass continuity equation
under the assumption that the wind field is uniform
across the valley. A key finding of the paper was that
a strong subsidence field was required in the valley in
order to satisfy the mean along-valley mass flux diver-
gence that occurred during a 7-h nocturnal steady-state
period. This mean subsidence field was expected to
have a strong influence on the valley momentum and
thermal energy budgets.

* Permanent affiliation: Pacific Northwest Laboratory, Richland,
Washington.

A 1887 Amearican Meteorological Society

In this paper we propose a method by which to eval-
uate individual terms of the coupled mass, momentum
and thermal energy budgets of a valley under condi-
tions where the wind field is steady-state and atmo-
spheric variables can be considered to be uniform in.
the cross-valley direction. We then present a prelimi-
nary evaluation of the method using data from the
1982 ASCOT experiment. In this attempt we begin
with the WB wind speed and mass budget data and
add some preliminary information on the along-valley
and vertical temperature structure to try to derive mu-
tually consistent fields of horizontal and vertical ve-
locities, momentum advection, temperature advection
and pressure. The friction term in the momentum
equation and the diabatic cooling term in the thermal
energy budget are determined as residuals.

2. Assumptions and analysis method

Our main assumption is that all fields may be con-
sidered uniform in the cross-valley direction y, such
that all information is contained in two-dimensional
x (along-valley direction)-z (vertical) sections. Under
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the assumption of steady-state winds and atmospheric
variables uniform in the cross-valley direction, we wish
to evaluate individual terms in the horizontal momen-
tum and thermodynamic energy equations. This eval-
uation will be accomplished by defining a two-dimen-
sional along-valley coordinate system, approximating
the two-dimensional wind and temperature fields and
the valley width with simple analytical functions, and
evaluating individual terms of the momentum and
thermodynamic energy equations on the coordinate
grid using the analytical functions. This method has
an advantage over methods that rely on the separate
calculation of mass, momentum and thermal energy
budgets since the analytical functions can be adjusted
easily to determine how a small change in the wind,
temperature or topography fields will affect all of the
coupled equations.

a. Coordinate system

We define two coordinate systems (Fig. 1) for an
along-valley section, with both coordinate systems
having their origin on the valley floor at the upper end
of the valley section. The first coordinate system follows
the valley floor (£~¢), and the other has a horizontal
x-axis (x~z). Application of this coordinate system to
the Brush Creek Valley observations, to be discussed
later, will be made for an (x-z)-grid resolution of Ax
= 1 km and Az = 15 m. Coordinate transformations,
then, are given as follows: '

8))

E=xcosa—z sina}
b

{=x sina + z cosa
where
a=0.86° (tana=120 m/8000 m).

b. System of equations

We begin by assuming that the along-valley wind
and temperature fields in the valley segment can be
approximated closely by analytical functions V' (£, ¢{)
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F1G. 1. Coordinate systems and the numerical grid.
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and T(¢, ¢) and that the distance from sidewall to
sidewall on a valley cross section Ay(&, {) can also be
approximated by a simple analytical function.

Now a streamfunction ¥ may be defined, which
equals the cumulative along-valley volume flux in m?
s~ up to height :

o
v= [ veraveds. @
(]

The vertical motion field can then be calculated in (£-
¢) coordinates as

or the down-valley and vertical motion fields can be
calculated in (x~z) coordinates as
_ 1 ¥
Ay dz
(3)

The valley pressure field can be calculated from the
valley temperature field using the hydrostatic equation
and the boundary condition that the horizontal pres-
sure gradient is negligible at ridgetop level. We wish to
do these calculations using potential temperature,
where, to a good approximation:

Z(m)
0=T+—=. 4
100 @
The hydrostatic equation then becomes
1dp’ g :
—_——_— 0”
po 0z b )

where potential temperature and pressure have been
linearized as follows:

8=0(z)+0'(x, z)]
p=p(2)+p'(x,2))

By integration downward over a height interval H we
obtain

(P'l—P'2)=PoH0§(;(§'2“5'1)- 6)

Subscripts 1 and 2 refer to the upstream and down-
stream valley ends, and the overbars are vertical av-
erages.

Arbitrarily setting 6 (¢ = 8 km) = (), the potential
temperature deviation 6’ is calculated and the pressure
field p’ is obtained by integrating the hydrostatic equa-
tion [Eq. (5)] downward, assuming p’ ~ 0 near ridgetop
level.

Naturally, we expect pressure to decrease in the
down-valley direction in the problem at hand, since it
is this pressure gradient dp’/dx that drives the katabatic
wind.
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For quasi-two-dimensional flow the momentum
equation in the x-direction is written:

ou - é 1dp’
u 6u+ u D

—=—| y—+w— |——-—+Triction.
at x 0z p Ox
momentum pressure @)
advection gradient

The pressure gradient term is expected to be positive
everywhere and friction negative. The advection and
pressure gradient terms in this equation can be eval-
uated at grid points using finite differencing with the
use of Egs. (3) and (5). Under the assumed steady-state
conditions, a balance is obtained between momentum
advection, pressure gradient and friction. Friction is
determined as a residual in the steady-state x-momen-
tum equation.

The energy balance at a point in the valley segment
under conditions of two-dimensional, stationary flow
is

a6 " af + a9 + D
— == u—+w=— )
at dx - 0z
storage temperature diabaticheating  (8)
advection or cooling rate
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FIG. 2. Relief of the lowest 12 km of Colorado’s Brush Creek Valley.
The outline of the valley drainage area and the location of the valley
“rim” are shown. Dots indicate the locations of tethersonde sites.
Site names indicate the laboratories that collected the data. LANL
is the Los Alamos National Laboratory, WPL is the Wave Propagation
Laboratory of the National Oceanic and Atmospheric Administration
(NOAA), ATDL is NOAA’s Atmospheric Turbulence and Diffusion
Laboratory, and CSU is Colorado State University.
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FI1G. 3. Cross sections of the Brush Creek Valley
at four tethered balloon sites.

By now, we have everything needed to compute the
advection terms in this equation. The storage term can
be computed from potential temperature differences
between successive soundings. Thus we can determine-
the diabatic heating or cooling rates in the valley as a'
residual.

3. Application to the 1982 Brush Valley data

As the next step in our analysis we wish to use the
30-31 July 1982 Brush Creek Valley data to perform
a test of the method.

The Brush Creek Valley is a 650-m deep valley
carved into the Roan Plateau of western Colorado (Fig.
2). In 1982 ASCOT field measurements were taken
along an approximately 8-km-long segment at the lower
end of the valley. These measurements were essentially
restricted to the narrow part of the valley below a
prominent valley rim that lies at about 2377 m MSL
(7800 ft) at both the upstream and downstream ends
of the valley. The valley floor slope is about 120 m in
the 8-km valley segment, with valley floor elevations

-varying from 1800 to 1920 m MSL. Topographic cross

sections of the valley at various points along the valley’s
axis are shown in Fig. 3.

Wind conditions in the valley were reported by WB
to be more or less stationary between 2200 and 0500
LST. Our considerations apply to this quasi-stationary
state. Down-valley wind speed profiles at several lo-
cations along the axis of the valley (Fig. 4) exhibited
“jet” profiles in which maximum windspeeds reached
7 m s~} only 90-150 m above the valley floor. These
wind speeds were reported to be fairly typical of the
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FIG. 4. Average down-valley wind speed as a function
of height for four tethered balloon sites.

katabatic wind regime of the Brush Creek Valley under
clear skies.

Whiteman and Barr assumed that the valley wind
field was uniform across the valley. This assumption
was used to calculate mass fluxes on valley cross sec-
tions from the available tethered balloon sounding data
taken generally from the center of the valley floor.
Whiteman and Barr investigated the small amount of
wind data available on a cross section of the Brush
Valley and concluded that the assumption of cross-
valley homogeneity was reasonable in the main part
of the valley atmosphere, but that this assumption be-
came invalid as the sidewalls were approached, espe-
cially in a zone 150 m above the sidewalls. They esti-
mated that the assumption of horizontal homogeneity
caused 15% overestimates of the volume fluxes on a
cross section. Recent analyses by ASCOT investigators
of Doppler lidar measurements made in the Brush
Creek Valley in 1984 (Post and Neff, 1986) suggest
that the assumption of cross-valley homogeneity pro-
duces volume flux overestimates of 30% to 45%.

In accordance with the model assumptions, we will
perform volume flux calculations for the Brush Creek
Valley from tethered balloon observations under the
assumption of cross-valley homogeneity of the mea-
sured wind speed profiles. In a later section of the paper
we will discuss the effect on the simulations of over-
estimates of the volume fluxes caused by this assump-
tion. It should also be mentioned that a series of short
tributaries or box canyons are present in the Brush
Creek Valley (Fig. 2). Clearly, there will be katabatic
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flows from the steep tributary canyons injecting neg-
ative momentum and thermal energy into the down-
valley flow along the main valley. These smaller scale
cross-valley transport and mixing processes cannot be
explicitly handled in our model; however, the net effect
of these smaller scale circulations will be a frictional
retardation and cooling of the flow in the main valley.
Following arguments by Vergeiner and Dreiseitl (1986)
on the role of the slope winds, it will be sufficient for
our purposes to consider that the effects of these pro-
cesses are included in the forcing terms in our mo-
mentum and energy equations.

a. The wind field and volume flux
The measured profiles of down-valley wind velocity

' V at four tethered balloon sites in the Brush Creek

Valley (Fig. 4) have been closely fitted analytically in
the following way:

V=ate™, )
where the coeflicients a and b are functions of the along-
valley coordinate ¢ [see Eqs. (14) and (15), below]. This
means that the height of maximum velocity {max = 1/
b also depends on £, as is evident from Fig. 4.

Now let the valley width Ay(¢, ¢) (Fig. 3) also be
represented analytically as follows:

Ay=c(§)—d(®)e™.

A good fit to the four stations in Figs. 2 and 3 is ob-
tained by setting

(10)

c(§)=(2.70+0.275¢) X 10° [m],-
d(£) =(2.55+0.241 £) X 10° [m),

(11)

(12)

where £ is in kilometers and 7 is constant:
y=12X10"[m™].

With Egs. (9) and (10), ¢ can be evaluated from Eq.
()

0 [ e L et
W §) b+7[fe d b+7(l e )

ac

—;[{e"’“—%(l - e“")]. (13)

Here, a, b, c and d are functions of £. Inserting suitable
approximations for a(£) and b(¢), the volume flux ¢
increases downstream, as stated by WB, and a sinking
motion results in the valley, which, in terrain-following
coordinates, is given by

1 oy

* =

Ay 8¢’

amounting to roughly —10 cm s™' near the rim, which,
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again, is within the same order of magnitude as ob-
tained by WB.

However, we need to treat this question a bit more
carefully. It is obvious that the downstream increase
of volume flux y is the net result of two opposing effects:
the downstream ‘increase of Ay and, therefore, of the
cumulative cross-sectional area [compare Fig. 3 and
Egs. (10), (11), (12)] and the downstream decrease of
flow speed V (Fig. 4). Unfortunately, it turns out that
the computed vertical velocities, in either terrain-fol-
lowing or (x~z)-coordinates, and all velocity gradients
and other subsequently needed quantities are quite
sensitive to small changes of a(£) and b(£), that is, to
the exact way in which the down-valley wind speed V'
decreases downstream. The functions a(£) and b(¢) that
were finally chosen were determined by qualitatively
fitting the vertical velocity profiles computed by WB
from along-valley wind data and the mass continuity
equation. Thus the along-valley and vertical wind ve-
locities are tied to the observed wind data.

All of the various forms of a(£) and b(£) that were
tried produce fields of V (¢, {) whose differences are
small and, in any case, lie well within the fluctuations
of the data points. Deviations from stationarity alone
leave more than ample leeway for such experiments.
To demonstrate this sensitivity, we show in Fig. 5 the
fields of flow speed ¥ (in terrain-following coordinates)
and the vertical velocity w [in (x—z)-coordinates] for
two choices of a and b.
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Case A (final choice):
a(g) = 0.225 — 0.00442¢ — 0.00096£2 [s™'],
Bb(£) = (1.12~0.00405£2) X 1072 [m™!],

where £ is expressed in km. (14)
Case B (for comparison):
a(£)=0.238 —0.0134¢ [s7'],
b(¢) = (1.18 —0.0065¢ — 0.0051£2) X 10‘2_[m"],
where £isinkm. (15)

Whereas the fields of down-valley flow V are very sim-
ilar, the fields of w (and, a fortiori, other derived dif-

- ferentiated quantities not shown i in comparison) are

substantially different.

From now on, all fields shown and dlscussed refer
to case A [Eq. (14)] only. Also, all subsequent com-
putations are done in the (x~z)-coordinate frame, in
line with the structure of the equations. As y(¢, {) [Eq.
(13)] and Ap¢, §) [Eq. (10)] are given in analytical
form, it is a straightforward matter to compute grid-
point values of ¢ and Ay in the (x-z)- frame using the
coordinate transformations.

Finally, the resulting streamfunction field ¢ = cu-
mulative down-valley volume flux is shown in Fig. 6,
emphasizing the subsidence that goes along with the
downstream increase of volume flux. Just as a check,
total volume fluxes up to ridgetop level come out to

Case b: Along-valley wind component v(m s™')

Case a: Along-valley wind component, v(m s™')

QUL —~O
OO WL = N

Distance (km) Distance (km)
Height (m) 0 2 4 6 8 Height(m) 0 2 -4 6 8
600 0.2 0.2 0.2 0.2 0.4 600 _ 0.1 0.1 0.2 0.3
500 0.4 0.4 0.5 0.6 0.9 500 0.3 0.3 0.4 0.7
400 1.0 1.0 1.1 1.3 1.6 400 0.8 0.9 1.0 1.4
300 23 2.3 2.4 2.6 29 300 2.1 2.0 2.2 2.7
200 4.8 4.7 4.7 47 4.6 200 4.5 43 4.3 4.6
100 7.3 7.0 6.7 6.2 5.4 100 7.3 6.7 6.3 6.1
0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0
Vertical Velocity w, ms™ Case “a” Vertical Velocity w, ms™ Case “b”
5007 —
500 Py 1
400 400 -o.1§
— -0.10 -0.14
£ 300 E 300~ 12 \016
£ 200 £ [~
% _ 2 200 \\ . \ _
T 100p— z -0.
0

] 2 4 6 8
Down-Valley Distance (km)

Down-Va"ey Distance (km)

Fi1G. 5. Comparison of (a) case A [final choice, Eq. (7)] and (b) case B [sensitivity test, Eq. (8)];
horizontal and vertical velocities in m 57",
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FIG. 6. Streamfunction, ¢, 10* m? s~%.

be approximately 1.0 X 10° and 2.3 X 10° m® s™' at
the upstream and downstream ends, respectively
(compare WB Fig. 5).

b. Temperature and pressure

Information on the nocturnal temperature structure
in the valley comes from the 3031 July 1982 ASCOT
dataset. Out of the numerous tethersonde soundings,
the 0300 LST soundings were chosen from the five
locations available (i.e., LANL, WPL, ATDL, LLNL
and CSU), with most emphasis on the LANL and CSU
data since they defined the upper and lower ends of
the instrumented 8-km segment of the valley. These
data show a very strong inversion up to 100 m above
the valley floor and a near isothermal stratification from
about 150 m upward.

The available soundings indicate a horizontal tem-
perature increase of 3° to 4°C between the upstream
and downstream ends of the 8-km-long valley segment
under consideration. This corresponds to a 2°C tem-
perature increase along the valley floor. However, the
soundings reach, at most, only up to 250 or 350 m
above the valley floor, and there are some questions
left open, such as the accuracy of intercomparisons
between tethered-balloon data collection systems, and
the local influence of topography at individual sites.
The tethersonde at the CSU site might occasionally be
sampling the Roan Creek Valley flow systems. Fur-
thermore, the night of 30--31 July 1982 appears to have
a rather large horizontal temperature difference com-
pared to other nights.

In view of the lack of observations at the ridgetop
level, we tried various temperature differences, but
ended up setting them to 1.5°C near ridgetop level,
whereas they are observed to be =~2°C along the valley
floor. For convenience, an analytic expression in the
(£-$)-frame is used again:

TE )= Tal® +(ToH — T(E))e™,  (16)

where 6 = 1.30 X 1072 m™!, Ty(§) is the temperature
along the valley floor, and T(£) is the temperature
limit near ridgetop level. Here To(£) and T(£) are both
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constructed to fit the data, which show a stronger gra-

dient in the upper, narrower part of the valley, such
that

_ To—To )
To(&)=To + (1.25 BT )E

_ < Toa— Ty
(o.gs R kmy )EZ
(17

_ TcoZ_ Taol [
To(®)=To + (1.25 e km )E

~ (0.25 T2~ T Tm’)gz

(8 km)*

J

subscripts | and 2 refer to upstream and downstream,
and our final choice, as discussed above, is

Tor—To1 =2°C,
TooZ— ol = 1.5°C.

Rotation into the (x-z)-grid is done as before, and the
resulting temperature field is shown in Fig. 7.

The pressure deviation field can be obtained from
the temperature field by integration using the method
outlined in section 2b. The results are shown in Table
1, where we use the (x~z)-coordinate system with origin
at the valley floor at the upper end of the valley seg-
ment. Naturally, pressure decreases in the down-valley
direction, since the pressure gradient drives the kata-
batic winds. The total pressure difference along the
valley bottom is about 0.3 hPa. This difference seems
realistic compared with an estimated pressure differ-
ence of about 0.3 hPa along the 15-km-long, 1000-m-
deep, but wider Dischma Valley of Switzerland (Egger,
1983). As a consequence of our temperature field
structure, horizontal pressure gradients are stronger in
the upper, narrower part of the valley. This feature is
reasonable in itself, and, as we shall see later, it yields
fair agreement between the pressure gradient and ad-
vection terms in the momentum balance.

Height {m)

0 2 4 6 8
' Down-Valley Distance (km})

FI1G. 7. Temperature field, degrees Celsius.
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TABLE 1. Pressure deviation, p’,.in hPa.
Distance along valley (km)
Height
(m AGL) 0 2 4 6 8
480 0.00 0.00 0.00 0.00 0.00
420 0.03 0.02 0.01 0.01 0.00
360 0.06 0.04 0.03 0.01 0.00
300 0.09 0.06 0.04 0.02 0.00
240 0.12 0.08 0.05 0.02 0.00
180 0.15 0.11 0.07 0.03 0.00
120 0.19 0.13 0.08 0.04 0.00
60 . 0.24 0.16 0.10 0.05 0.00
0 0.30° 0.20 0.12 0.06 0.00
—60 0.16 0.07 0.00°
-120 0.00

¢. Momentum equation

The momentum balance for stationary, quasi-two-
dimensional flow was given as Eq. (7). The advection
and pressure gradient terms in this equation were cal-
culated for the Brush Valley simulation using finite
differencing. Table 2 shows the results. The horizontal
pressure gradient decreases with height until becoming
zero at ridgetop level. The sum of vertical and hori-
zontal momentum advection, as listed in the table,
changes sign as the ground is approached. Above the
level of the jet, negative fluxes of down-valley momen-
tum are experienced, since the mean subsidence field
causes weak down-valley winds to be advected down-
ward into the valley. Below the level of the jet, positive
momentum fluxes are experienced as the general sub-

TABLE 2. Terms of the momentum equation at different distances
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along the valley axis.
Distance along valley (km)
1 _ “ 4 7
Height
mAGL)  * t . t .t
480 033 0.00 024 0.00 025 0.00
450 043 022 032 0.18 031 0.15
405 0.65 0.55 0.46 0.46 0.42 0.37
360 094 088 -0.66 0.74 0.56 0.60
315 130 122 0.91 1.02 0.7t 0.83
270 1.69 157 1.18 131 0.86 1.06
225 197 193 142 1.60 096 1.29
180 1.90 231 149 191 0.91 1.53
135 1.14 274 1.17 223 ° .0.61 1.78
90 -0.47 3.26 027 260 007 205
45 -209 392 -111 305 -1t 237
0 —-222 484 -—197 363 208 275
—45 ~-147 446 -2.03 3.25
-90 -0.87 3.99

. . ou 3 .
* Minus momentum advection (u5;+ w-él-;) ,in 1072 ms™2

G

t Pressure gradient (:l éll) ,in 10 ms™2,
p Ix
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FIG. 8. Terms of the momentum equation at x = 4 km, 10 'm s™,

sidence causes downward advection of the strong wmds
associated with the jet.

The balance between all terms of the momentum
equation as a function of height at a distance of 4 km
down the valley is shown in Fig. 8. Note that this figure
is just another way of presenting the center columns
(at 4 km) of Table 2. Friction is negative, and the profile
makes sense. Regarding its magnitude, we can make
an estimate of a Guldberg-Mohn-type linear friction
law applied to the first grid point above the valley floor,
where the along-valley wind speed is 2.5 m s™*:

—uk,

from which the friction coefficient can be calculated
as . . .

friction ~ —5.6 X 103 ms™2=

1 1
k=~ ~
450s
This value seems reasonable compared to reaction
times in the much wider Inn Valley of Austria, where

they are on the order of 30 min (Vergeiner and Drei-
seitl, 1986).

d. Energy balance equation

8 min’

We can next turn our attention to the computation
of the terms in the thermal energy balance equation
[Eq. (8)). As we have seen in Fig. 5, a strong subsidence
field is present in the valley. Subsidence in the stable
valley atmosphere will produce local warming [i.e., 86/
ot = —w(86/3z)]. On the other hand, this warming due
to subsidence can be counteracted by cold air advection
in the down-valley flow. Figure 9 shows the sum of the
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FIG. 9. Minus potential temperature advection,
(38/3x) + w(a6/az), degrees Kelvin per hour.

horizontal and vertical potential-temperature advection
terms. As we see in the figure, cold air advection by
the down-valley wind counteracts the subsidence
warming only slightly in the upper levels, but becomes
- a more important factor in the energy budget in the
lower levels of the valley where along-valley winds and
horizontal temperature gradients are stronger. There,
total temperature advection changes sign, implying that
cold air advection overcomes subsidence warming. -
If the temperature structure were steady-state, total
advection (horizontal + vertical) could be compensated
only by diabatic cooling [see Eq. (8)]. In this case, Fig.
9 represents the field of diabatic cooling in the valley.
The required maximum diabatic cooling then would
be nearly —2.9 K h™!, with the average over the valley
being —1.95 K h™. There is, however, a region of dia-
batic warming close to the valley floor, with values
ranging up to +0.8 K h™'. The size of this region of
diabatic warming is somewhat overestimated by the
fact that we are assuming steady-state conditions. In
actuality, the valley atmosphere cooled at an average
rate of ~0.5 K h™! during the 7-h period. Nonetheless,
the location of this region of apparent diabatic warming
is reasonable since effective outgoing radiation and
sensible heat flux are expected to be reduced on the
valley floor relative to the upper sidewalls or mesa tops.
This reduction is caused by an increase in the effective
radiating temperature of the sky (and thus of downward
longwave radiation) as one descends from the sidewalls
because of view factor considerations. A second reason
for the diabatic warming is the downward mixing of
potentially warmer air near the valley floor. Although
the air is extremely stably stratified, Richardson num-
bers are nevertheless below critical values in the lowest
dekameters, such that turbuience must occur there. A
quantitative estimate shows that an eddy diffusivity of
roughly one-fifth the “adiabatic” value (ku*z from the
logarithmic wind profile) would yield the observed
warming by turbulent mixing. Again, this warming is
plausible considering the strong stability.
In the uppermost layers, warming by subsidence es-
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sentially compensates diabatic cooling [Eq. (8)], but
horizontal advection #(36/9x), though minor, changes
the numbers somewhat. If we had chosen the temper-
ature difference between the ends of the valley segment
at upper levels to be 1°C rather than 1.5°C (our final
choice, compare Fig. 7), the diabatic cooling rates
needed to establish a balance in Eq. (8) would have
increased to —3.5 K h™! (maximum) or —2.4 K h™!
(mean), respectively, and the layer of diabatic warming
at the bottom would have been shallower. Conversely,
increasing the temperature difference near the rim
would make the required diabatic cooling rates smaller.

4. Radiative loss and heat balance on the mesa

Our delicate attempts at balancing ail equations end
up with something qualitatively plausible. We find a
weighted mean diabatic cooling rate of roughly —2 K
h7! in the valley segment. This diabatic cooling rate
would be about —2.5 K h™! if we considered the de-
crease in energy storage in the valley segment. The dia-
batic processes of radiative flux convergence and sen-
sible heat flux are responsible for this cooling. To shed
more light on the diabatic cooling we wish to consider
for the moment that all diabatic cooling comes from
surface sensible heat flux. We can then calculate the
required mean surface sensible heat flux over the entire
area of the valley. The Brush Creek Valley is approx-
imately 25 km long. The core of our calculation is that
air is being cooled over the entire catchment area be-
tween the two ridge lines (Fig. 2), amounting to ap-
proximately 95 km?, but that this cold air flow is es-
sentially channeled or concentrated into the valley
proper below rim height, i.e., the volume we have been
concerned with up to now. Taking the whole length of
the Brush Creek Valley, a mean cross-sectional area
up to the rim would be 0.40 X 10® m? (near the up-
stream station listed in WB; see their Fig. 1), as opposed
to a mean cross section of approximately 0.68 X 10°
m? for the 8-km segment at the lower end of the entire
valley. Now, let the mean sensible heat flux, to be es-
timated, be H [W m™2), positive upward.

From the first law of thermodynamics

. 8T
HX95[km?] = pc,,a—::w X 0.40 X 10°[m?] X 25 [km].

volume

sensible heat withdrawn  change of
from the air and/for =heat content X of (18)
radiative flux divergence per volume  valley

Taking the “observed” value for diabatic heating of
approximately —2 K h™! for 677/6t, it follows from (18)
that H = —58 W m™. This energy has to be with-
drawn, on the average, from the air close to the
ground. The corresponding number for —2.5 Kh™'is
H=-73Wm™2

We can do similar calculations for the 8-km valley
segment using a catchment area of 32.5 km? and a
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mean cross-sectional area of 0.68 X 10° m?, For a dia-
batic cooling rate of —2 K h™' this calculation results
in a mean sensible heat flux of =92 W m~?; for a cooling
rate of —2.5 K h™' we get =116 Wm™%,

There are no energy balance data available for the
night of 30~31 July, but preliminary results from AS-
COT measurements in the same valley in 1984 show
effective outgoing radiation values of up to —70 W m™2
(Simpson et al., 1985). However, preliminary analyses
of this data show that soil heat flux largely counteracts
this net radiation deficit. Evaporation rather than con-
- densation typically occurs at night in the semiarid
Brush Creek Valley climate. This latter fact would ac-
tually boost the (negative) sensible heat flux from the
air a bit, but our best estimate of surface sensible heat
flux from preliminary observations taken in the Brush
Creck Valley in the fall of 1984 is only approximately
—25 W m™?, considerably short of what is required.
On the other hand, we find nocturnal sensible heat
fluxes reaching —80 W m™ in the literature for com-
parable sites (Staudinger, 1983; Rott, 1979), and heat
budgets could vary considerably between summer 1982
and fall 1984, depending on soil conditions, wind, hu-
midity and other factors.

As a last resort, we could postulate that radiative
flux divergence makes up the difference. In principle,
longwave-radiation flux divergences act to ¢ool the at-
mosphere, and cooling is concentrated in the lower
layers. However, we will not pursue this notoriously
unknown quantity any further here. We remark in
concluding that there are two ways to alleviate the
rather Jarge diabatic cooling requirement.

1) As mentioned previously, the wind field we use
(Figs. 4 and 5) could be overestimated by up to 45%.
Correspondingly, #, w and temperature advection
would be reduced proportionately in amount, and
likewise the required diabatic cooling.

2) If the horizontal temperature difference near the
rim is larger than 1.5°C (see the discussion at the end
of section 3d), we need less cooling for balance. Larger
horizontal temperature gradients are, in fact, quite
compatible with our data.

5. Conclusions

A method was proposed to evaluate the coupled
mass, momentum and thermal energy budget equa-
tions for a deep valley under nocturnal, two-dimen-
sional, -steady-state flow conditions. The method re-
quires the temperature, down-valley wind and valley
width fields to be approximated on a two-dimensional
vertical grid that runs down the valley axis. Advection
terms in the momentum and energy equations are then
calculated using finite differences computed on the grid.
The pressure gradient term in the momentum equation
-is calculated from the temperature field by means of
the hydrostatic equation. The friction term is then cal-
culated as a residual in the xxmomentum equation,

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOL. 44, No. 1

and the diabatic cooling term is calculated as a residual
in the thermal energy budget equation.

Using this method, the dynamics of the katabatic
circulation system in the deep, narrow Brush Creek
Valley of Colorado were evaluated during a time of
steady-state nocturnal drainage flows. The evaluation
was accomplished using simple analytical functions to
describe the vertical and along-valley structure of the
wind and temperature fields and the valley width. A
key assumption was that the wind and temperature
fields were uniform across the valley. The analytical
functions were fit to data collected by four tethered-
balloon data collection sytems operated at different
points along the axis of the valley in the lowest 8-km
segment of the valley during the night of 30-31 July
1982. Individual terms of the budgets were computed
on a numerical grid using finite differences or were
calculated as residuals.

Tethered balloon observations in the valley taken .
during a quasi-steady-state period from 2200 to 0500
LST showed down-valley winds in the valley with peak
speeds of 7-8 m s™! in a jet axis located only 90-150
m above the valley floor. The height of the jet increased
slightly and the peak speeds decreased slightly with
down-valley distance. The valley’s temperature field

" was characterized by an intense but shallow inversion

in the lowest 100 m above the valley floor. This intense
inversion was surmounted by an isothermal temper-
ature layer that €éxtended from 150 m through the re-
maining valley depth.

The mass budget of the valley was investigated by
deriving a streamfunction in which the numerical val-
ues represent the cumulative along-valley volume flux
up to the height of integration. The computed volume
or mass fluxes depend on the product of valley width
and along-valley wind speed component. The large rel-
ative increase in valley width in the valley segment
investigated resulted in volume fluxes that increased
strongly with down-valley distance. Volume fluxes in-
creased from 1 million to 2.3 million m? s~ from the
upstream to the downstream ends of the valley seg-
ment. Calculations showed that this increase in down-

-valley volume flux, if supported solely by subsidence

in the valley atmosphere, would result in peak subsi-
dence rates of about 0.10 m s™! with subsidence gen-
erally through the entire valley depth.

Tethered balloon observations showed that temper-
atures increased on horizontal surfaces from the up-
stream to downstream ends of the valley segment.
Temperature increases were about 2°C along the valley
floor in the lower levels of the atmosphere and were
assumed to be 1.5°C near ridgetop levels. Because of
this temperature field structure, down-valley winds
produced cold air advection, as expected. Hydrostatic
calculations estimated that maximum horizontal pres-
sure gradients were 0.3 hPa/8 km at the ground near
the upstream end of the valley segment.

The along-valley momentum budget under steady-
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state conditions requires a balance among vertical and
horizontal momentum advection, the pressure gradient
force, and the force of friction. An example of the ver-
tical variation of individual terms in the momentum
equation was provided for a location near the middle
of the valley segment. Subsiding motions in the valley
produced negative vertical down-valley momentum
fluxes in the upper valley atmosphere, but produced
positive down-valley momentum fluxes below the level
of the jet. Friction, calculated as a residual in the x-
momentum equation, was negative, as expected on
physical grounds, and attained reasonable quantitative
values. It was nearly zero in the upper part of the valley
atmosphere but increased in the lowest 200 m to a
. maximum value of —0.006 m s~2 as the ground was
approached.

The thermodynamic energy equation requires a bal-
ance among the change in heat storage in the valley,
vertical and along-valley advection of potential tem-
perature, and diabatic heating. Change in heat storage
in the valley segment was at the rate of about —0.4 K
h~! when integrated over the valley volume. The strong
subsidence field in the stable valley atmosphere pro-
duced subsidence warming (+2.5 K h™') that was only
partly counteracted by down-valley cold air advection
(—0.5 K h™!). Strong diabatic cooling (—2.0 K h™') was
required to balance the thermal energy budget equa-
tion. This large rate of diabatic cooling seems somewhat
too large to be supplied by the diabatic processes of
sensible heat flux and radiative flux divergence. No
information on these processes is available for the 1982
ASCOT experiments, but sensible heat flux measure-
ment made by several investigators in the Brush Creek
Valley in 1984 should be available soon. ’

Recent observational evidence suggests that the
cross-valley homogeneity assumption used in the cal-
culations significantly overestimates along-valley vol-
ume flux divergence and, thus, the rates of subsidence
and subsidence heating. The excessive diabatic cooling
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requirement appears to be caused by the large rate of
subsidence heating. Thus, diabatic cooling would be
significantly reduced by more realistically accounting
for the cross-valley structure of the down-valley wind
system.
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